

Reactor Based Transmutation Studies

R. N. Hill

Advanced Fuel Cycle Initiative Quarterly Review Meeting

January 22, 2003

Argonne National Laboratory

Transmutation System Approach

Key Conclusions from Initial Multi-Tier Fuel Cycle Study

- Given clean fuel processing (0.1% losses), typical goals for transmutation can be achieved
 - TRU and plutonium losses to waste less than 0.6%
 - Radiotoxicity below level of natural ore in < 1,000 years
- First tier thermal spectrum irradiation does not significantly reduce the radiotoxicity
 - Confirms need for a final tier fast spectrum system
- Utilization of first tier thermal spectrum system can increase the Tier 2 support ratio
 - Fewer specialized transmutation systems required

Double Tier Irradiation

First Tier Irradiation Only

Refined System Studies

- Potential to achieve deeper burnup in Tier 1 system ANL
 - Work has focused on the French CORAIL concept
 - Evaluation of practicality issues
- Refinement of systems evaluation techniques LANL
 - Dynamic analyses of fuel cycle systems
- Reactor-based transmutation studies
 - ➢ Proliferation resistant LWR fuel cycles ANL, BNL, MIT MOX, thorium, and nonfertile fuel options

 - ✓ Long-lived fission production transmutation ANL

 → Potential in both LWR and FR evaluated

CORAIL Multi-Recycle Concept for Plutonium Stabilization

- O UO, rod O MOX rod O Guide tube

Concept

- Heterogeneous assembly in a homogeneous core
- Standard design using fuel rods and assembly that are qualified
 - Mass balance in CORAIL core is similar to 30% MOX case, but much better for multirecycling
- Pu/TRU discharged from both MOX and UOX pins is recycled
- **Design Criteria**
 - Uranium enrichment < 5.0%</p>
 - Pu content in MOX < 12%</p>
 - Power peaking factor < 1.2</p>
 - No adverse effect on reactivity coefficients and shutdown margin

French-CEA CORAIL concept considered for Pu stabilization (i.e., no net production of Pu)

Compatible with existing LWR

Transmutation Performance of CORAIL-Pu Concept

- No significant degradation of reactivity coefficients with multiple recycle
- 30% MOX reaches equilibrium
 Pu isotopics within a few stages
- Solution required for minor actinides (MA)
 - MA content higher than for UO₂ assembly (~3)
 - Direct disposal results in slight reduction of long-term radiotoxicity
 - Dual tier strategy sends minor actinide as fuel to Tier 2
- Supporting studies pursued
 - Detailed comparison of power distributions with CEA results

Mass Evolution with Recycling (CORAIL-Pu)

Normalized Cancer Dose

Impact of CORAIL-Pu Deep Burnup on Tier 2 ADS Performance

- Extent of burnup in Tier 1 impacts Tier 2 performance
 - Deep burnup results in high minor actinide and low fissile contents
- Tier 2 fuel inventory is high because of low fissile content
- For same energy requirement, the discharge burnup is lower
 - More processing required to consume material
- Improved burnup swing because of low fissile content
- Effective consumption of 75% of TRU in Tier 1
 - Reduces Tier 2 support fraction requirements

Parameter	Single Tier ADS	CORAIL ADS
BOEC Heavy metal inventory (kg)	2709	3848
Discharge burnup (MWd/kg)	273	199
Burnup reactivity loss (%Δk)	4.14	1.23
Effect TRU mass reduction in first tier	n/a	~75%

LWR Recycle Reduces Tier 2 Capacity

- Downselection studies focused on "deep burnup" of TRU in commercial sector by utilizing CORAIL concept
 - Pu multi-recycling stabilizes Pu; only minor actinides are sent to transmutation sector (conversion ratio ADS=0.0; fast reactor~0.5)

Thermal Power Capacity by Tier in a Sustained Nuclear Enterprise (300 GWth Enterprise includes Commercial and Transmutation Sectors)

CORAIL-TRU Multi-recycling Results Less Convincing

- From physics perspective, repeated recycle can be achieved
- TRU content gradually increases with recycle stage; power peaking a problem at high enrichment
- Alternate assembly designs have been investigated
- High minor actinide content complicates fuel handling; radiation sources and doses evaluated
- Practical considerations likely limit to a few recycles

Mass Evolution with TRU Recycling

Fuel Handling Indices at Fabrication Stage Compared to CORAIL-Pu Cycle 7

Advanced LWR-Based Transmutation of Waste

- Evaluation of proliferation resistant fuel cycles for transmutation of transuranics, using existing or slightly evolutionary LWRs
 - Assess practical limits of approaches in terms of technological development needs, infrastructure requirements, reactor safety, worker and population dose, and economic issues
 - Propose potential solutions for alleviating limitations
- Three technologies investigated: MOX, non-fertile, and thoriumbased fuel cycles
 - Different recycle hypotheses using MOX fuel evaluated at ANL
 - BNL investigated the use of Thorium-based fuel
 - Non-fertile fuel form for waste transmutation studied by MIT
- Results indicate that TRU stabilization approach is more attractive than once-through burner
 - Fuel handling issues limit number of recycles

LWR Recycle Hypotheses at Equilibrium States

Recycle Hypothesis	Advantages	Disadvantages
Pu-only	Easiest to implement. Pu out of repository. Reduction in mid-term waste radiotoxicity and heat load.	Pu in fuel cycle needs safeguards (non-proliferation concerns). Radiotoxicity target unmet.
TRU	Clear benefits to repository. Provides time for advanced Series 2 systems to be deployed.	Fuel handling issues in fuel cycle. Limited recycles?
Pu+Np	Similar benefits to Pu-only case. With irradiation, Np-237 and a higher Pu-238 content provides marginal intrinsic radiation sources.	Does not significantly reduce Np-237 in repository. Radiotoxicity target unmet. Similar proliferation issues as Pu.
Pu+Np+Am (PNA)	Removal of Am-241 helps in the midand long-term (Np-237 minimized).	Presence of curium limits benefits to the repository (Pu-240 content) Fuel handling is a problem.
PNA and No Pu-242 or Pu242/Am-243)	Radiotoxicity improved over PNA. Provides additional benefits to fuel handling over PNA.	Radiotoxicity target unmet.

LMR Transmutation Scenarios with Th-Fuel

Two options evaluated

- •Burner Initial loading from spent LWR TRU + ThO₂; multiple re-cycles performed with additional LWR spent fuel TRU as sole fissile feed.
- •Sustainability Same initial fuel loading as burner, but subsequent recycles include the TRU and U-233 from previous Th-fuel cycle, supplemented by (LEU)O₂.
- Burner transmutation performance
 - Consumes ~25 kg-TRU/assembly/cycle
 - Sharp reduction in boron worth
 - Positive MTC at third recycle
- Sustainable transmutation performance
 - TRU balance after 4 recycles
 - Reduced boron worth, but
 - Fuel and MTC typical
 - Significant reduction in decay heat and toxicity, as shown in figures

Sustainable Fuel Cycle Results - MIT

Combined **N**on-**F**ertile and **U**ranium Assembly

- Equilibrium state with zero net TRU generation while maintaining acceptable reactivity control and thermal hydraulic characteristics possible
- Impact on the environment is limited by 0.1% of reprocessing losses
- Number of recycle stages is constrained by cost and capabilities of fuel reprocessing, handling, and fabrication technologies
- Key challenge accumulation of Cf and Cm isotopes, which complicates reprocessing and fabrication due to high SFS

CONFU

Advanced Fast Reactor (FR) Based Transmutation of Waste

- Support fraction much higher for fast reactor scenarios
 - At CR~0.5, roughly twice capacity of CR=0 ADS systems required
- However, different constraints were applied
 - For FR, limited to conventional fuel enrichment
 - For ADS, nonuranium fuel form was employed
 - Prevailing wisdom is that fast reactor safety performance will be compromised at low uranium content
- Low conversion ratio fast reactor design study ANL
 - How low can the uranium content be reduced without adverse consequences to reactor safety?
- Advanced reactor/fuel technology options also considered
 - Dedicated heavy metal (Pb-Bi) coolant burners MIT
 - Utilization of Th-based fuel UM

Low Conversion Ratio Burners: Performance Results

Fuel Enrichment, % TRU/HM	27/33	37/46	46/58	100
TRU Conversion Ratio	0.47	0.31	0.22	0.00
Net TRU consumption rate (kg/yr)	126	170	198	270
Burnup Swing (%Dk)	2.8	3.9	4.6	6.4
Sodium Void Worth (\$)	2.2	1.5	0.53	-7.0
Radial Expansion Worth (cents/C)	-0.34	-0.40	-0.44	-0.57
Doppler Worth (cents/C)	-0.066	-0.060	-0.051	-0.011
Peak TOP Fuel Temperature, K	863	889	898	944
Peak LOHS Coolant Temperature, K	875	872	853	849

- Conventional enrichment at CR ~ 0.5
 - Enrichment gradually increases to roughly 50% TRU/HM at CR ~ 0.25
- Burnup reactivity loss increases sharply at low CR
- High leakage configurations improve void worth and expansion coefficients
- Unprotected TOP, LOF, and LOHS events analyzed for whole-core
 - Passive responses are effective in <u>all</u> cases mild temperature increases
 - Largest temperature rise observed for TOP case at low CR

Sample Transient Result: Reactivity for TOP Event, CR=0.22

Advanced Fast Pb-Bi Cooled Reactors for Actinide Burning - MIT

Reactor Designs Being Explored

Fertile Free Fuelled TRU incinerator (ABR)

Dedicated Minor Actinide Burner with Thorium-based fuel (MABR)

Technical Challenges

Small $m{b}_{e\!f\!f}$, Doppler and coolant voiding reactivity feedbacks

Innovative Technical Solutions Adopted

Safety Features

a) Streaming Assemblies

Comparable to IFR

b) Double-entry CRD system

Param eter	A B R	Th-MABR
A [¢]	-12.0	-7.1
B [¢]	-33.0	-21.8
C [¢/K]	-0.41	-0.24
A/B	0.37 [0:1.50]	0.33 [0:1.50]
CDT/B	1.24 [1:1.54]	1.08 [1:1.54]
Dr _{TOP} / /B/	1.46 [0:1.50]	1.11 [0:1.50]

□ TRU Destruction Rates

- 1. ABR $\sim 0.38 \, [kg_{HM} / MWth / EFPYs] \sim 239 \, (192 \, Pu) \, [kg_{TRU} / yr]$
- 2. MABR ~ 0.26 [kg_{TRIJ} / MWth / EFPYs] ~ 170 (125 MAs) [kg_{TRIJ} / yr]

Potential Use of Thorium in Transmuters

- Th-U fuel increases Pu/TRU consumption.
 - ²³⁹Pu reduction matched by ²³³U production.
- Denatured with ²³⁸U, fissile ²³³U production may not increase proliferation risk.
- Results for typical burnup, 20% Th in fertile fuel.

	LWR Spent Fuel Feed		
Transmuter Characteristics	U-TRU	Th-U-TRU	
Enrichment (TRU/HM)	28%	29%	
TRU feed (kg/yr)	588	599	
U-233 production rate (kg/yr	0	16	
Pu-239 destruction rate (kg/y	80	97	
TRU destruction rate (kg/yr)	117	136	

Long-Lived Fission Product (LLFP) Transmutation in Reactors

- Systematic evaluation of transmutation priorities
 - Tc-99 and I-129 identified
- Transmutation potential in both fast and thermal systems
 - Conventional PWR
 - Sodium-cooled ATW design
- Wide variety of target designs were considered in both systems
 - Also homogeneous with fuel
 - Moderated targets in FR
- Fuel cycle loading optimization studies performed
 - Number of targets/regional variations
 - Impact on key reactor performance parameters evaluated

Tc-99-Coated Fuel Pellet

Annular Target in Guide Tube

Key Conclusions of LLFP Transmutation Studies

- Both Tc-99 and I-129 can be stabilized in same PWR core
 - Mix Tc-99 with fuel
 - Moderated Cal₂ targets in guide tubes
- Fast systems attractive because of excess neutrons
 - Preferred loading is moderated targets on core periphery
 - Net consumption can be achieved
- Impact on repository released dose rates was evaluated
 - LLFP dominate in short-term
 - More important with TRU elimination
 - Remain below regulatory limit
- Need for specialized waste form or LLFP transmutation not compelling

Direct Disposal of LWR Fuel

Disposal with TRU Transmutation

Summary of AFCI Systems Studies

- Waste characteristics significantly improved by transmutation
 - Removal of bulk uranium from high level waste
 - Reduction of key parameters (heat load, dose) by TRU destruction
 - Transmutation performance driven by processing loss fractions
- Tier 1 can be effective for burning plutonium and reducing Tier 2 infrastructure
 - Extent of burnup impacts Tier 2 system performance
- A variety of LWR reactor options have been considered
 - Heterogeneous loading, MOX, thorium, and nonfertile fuel forms
 - Multi-recycle of plutonium appears feasible
 - TRU multi-recycle limited by practical considerations
- A variety of fast reactor options have been considered
 - Low conversion ratio, heavy metal coolant, thorium fuel
 - High enrichment fuels offer a safe and viable alternative/complement to Tier 1 partial burning to reduce the Tier 2 infrastructure
- Reactor transmutation of LLFP is possible
 - Stabilize Tc-99 and I-129 in PWR, or burn in dedicated fast reactor

